Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 7(1): 60, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514757

RESUMO

Despite progress in the prevention and diagnosis of cancer, current technologies for tumor detection present several limitations including invasiveness, toxicity, inaccuracy, lengthy testing duration and high cost. Therefore, innovative diagnostic techniques that integrate knowledge from biology, oncology, medicinal and analytical chemistry are now quickly emerging in the attempt to address these issues. Following this approach, here we developed a paper-based electrochemical device for detecting cancer-derived Small Extracellular Vesicles (S-EVs) in fluids. S-EVs were obtained from cancer cell lines known to express, at a different level, the αvß6 integrin receptor, a well-established hallmark of numerous epithelial cancer types. The resulting biosensor turned out to recognize αvß6-containing S-EVs down to a limit of 0.7*103 S-EVs/mL with a linear range up to 105 S-EVs /mL, and a relative standard deviation of 11%, thus it may represent a novel opportunity for αvß6 expressing cancers detection.

2.
J Transl Med ; 20(1): 290, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761360

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive disease characterized by high risk of relapse and development of resistance to different chemotherapy agents. Several targeted therapies have been investigated in TNBC with modest results in clinical trials. Among these, PI3K/AKT inhibitors have been evaluated in addition to standard therapies, yielding conflicting results and making attempts on elucidating inherent mechanisms of resistance of great interest. Increasing evidences suggest that PI3K/AKT inhibitors can induce autophagy in different cancers. Autophagy represents a supposed mechanism of drug-resistance in aggressive tumors, like TNBC. We, therefore, investigated if two PI3K/AKT inhibitors, ipatasertib and taselisib, could induce autophagy in breast cancer models, and whether chloroquine (CQ), a well known autophagy inhibitor, could potentiate ipatasertib and taselisib anti-cancer effect in combination with conventional chemotherapy. METHODS: The induction of autophagy after ipatasertib and taselisib treatment was evaluated in MDAMB231, MDAM468, MCF7, SKBR3 and MDAB361 breast cancer cell lines by assaying LC3-I conversion to LC3-II through immunoblotting and immunofluorescence. Other autophagy-markers as p62/SQSTM1 and ATG5 were evaluated by immunoblotting. Synergistic antiproliferative effect of double and triple combinations of ipatasertib/taselisib plus CQ and/or paclitaxel were evaluated by SRB assay and clonogenic assay. Anti-apoptotic effect of double combination of ipatasertib/taselisib plus CQ was evaluated by increased cleaved-PARP by immunoblot and by Annexin V- flow cytometric analysis. In vivo experiments were performed on xenograft model of MDAMB231 in NOD/SCID mice. RESULTS: Our results suggested that ipatasertib and taselisib induce increased autophagy signaling in different breast cancer models. This effect was particularly evident in PI3K/AKT resistant TNBC cells, where the inhibition of autophagy by CQ potentiates the therapeutic effect of PI3K/AKT inhibitors in vitro and in vivo TNBC models, synergizing with taxane-based chemotherapy. CONCLUSION: These data suggest that inhibition of authophagy with CQ could overcome mechanism of drug resistance to PI3K/AKT inhibitors plus paclitaxel in TNBC making the evaluation of such combinations in clinical trials warranted.


Assuntos
Cloroquina , Resistencia a Medicamentos Antineoplásicos , Inibidores de Fosfoinositídeo-3 Quinase , Neoplasias de Mama Triplo Negativas , Animais , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
3.
J Exp Clin Cancer Res ; 39(1): 213, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032653

RESUMO

BACKGROUND: Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS: Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS: We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION: Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Fatores de Transcrição/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Docetaxel/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Sinvastatina/administração & dosagem , Células Tumorais Cultivadas , Ácido Valproico/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Front Cell Dev Biol ; 8: 732, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015030

RESUMO

Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a devastating malignancy with a poor prognosis. The combination of cisplatin (CDDP) plus cetuximab (CX) is one of the standard first-line treatments in this disease. However, this therapeutic regimen is often associated with high toxicity and resistance, suggesting that new combinatorial strategies are needed to improve its therapeutic index. In our study, we evaluated the antitumor effects of valproic acid (VPA), a well-known antiepileptic agent with histone deacetylase inhibitory activity, in combination with CDDP/CX doublet in head and neck squamous cell carcinoma (HNSCC) models. We demonstrated, in HNSCC cell lines, but not in normal human fibroblasts, that simultaneous exposure to equitoxic doses of VPA plus CDDP/CX resulted in a clear synergistic antiproliferative and pro-apoptotic effects. The synergistic antitumor effect was confirmed in four different 3D-self-assembled spheroid models, suggesting the ability of the combined approach to affect also the cancer stem cells compartment. Mechanistically, VPA enhanced DNA damage in combination treatment by reducing the mRNA expression of ERCC Excision Repair 1, a critical player in DNA repair, and by increasing CDDP intracellular concentration via upregulation at transcriptional level of CDDP influx channel copper transporter 1 and downregulation of the ATPAse ATP7B involved in CDDP-export. Valproic acid also induced a dose-dependent downregulation of epidermal growth factor receptor (EGFR) expression and of MAPK and AKT downstream signaling pathways and prevent CDDP- and/or CX-induced EGFR nuclear translocation, a well-known mechanism of resistance to chemotherapy. Indeed, VPA impaired the transcription of genes induced by non-canonical activity of nuclear EGFR, such as cyclin D1 and thymidylate synthase. Finally, we confirmed the synergistic antitumor effect also in vivo in both heterotopic and orthotopic models, demonstrating that the combined treatment completely blocked HNSCC xenograft tumors growth in nude mice. Overall, the introduction of a safe and generic drug such as VPA into the conventional treatment for R/M HNSCC represents an innovative and feasible antitumor strategy that warrants further clinical evaluation. A phase II clinical trial exploring the combination of VPA and CDDP/CX in R/M HNSCC patients is currently ongoing in our institute.

5.
Cytokine Growth Factor Rev ; 51: 69-74, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31937439

RESUMO

Extracellular Vesicles (EVs) represent a heterogeneous population of particles naturally released from all cells, delimited by a lipid bilayer and able to horizontally transfer their cargos to recipient cells. These features imply the growing interest on EVs in cancer biology as biomarkers and therapeutic targets. In this review, we will highlight the specific process related to biogenesis and release of large EVs (L-EVs) derived from the plasma membrane (PM) compared to the small and well described exosomes, generated through the classical endosome-multivesicular body (MVB) pathway. The control of PM rigidity by cells depends on lipid/protein composition, cytoskeleton dynamics, cytoplasmic viscosity, ions balance, metabolic reprogramming and specific intracellular signaling pathways, all critical determinants of L-EVs biogenesis. We will focus in details on a specific class of L-EVs, named Large Oncosomes (LO), exclusively shed by cancer cells and with a size ranging from 1 µm up to 10 µm. We will examine LO specific cargos, either proteins or nucleic acids (i.e. mRNA, microRNAs, single/double-stranded DNA), as well as their functional role in cancer development and progression, also discussing the mechanisms of L-EVs internalization by recipient cells. Overall we will highlight the potential of LO as specific diagnostic/prognostic cancer biomarkers discussing the associated challenges.


Assuntos
Progressão da Doença , Vesículas Extracelulares/fisiologia , Neoplasias/fisiopatologia , Animais , Biomarcadores Tumorais , Membrana Celular/fisiologia , Exossomos/metabolismo , Vesículas Extracelulares/patologia , Humanos , Camundongos , Neoplasias/diagnóstico , Tamanho das Organelas
6.
J Exp Clin Cancer Res ; 38(1): 317, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319863

RESUMO

BACKGROUND: Molecular markers for prostate cancer (PCa) are required to improve the early definition of patient outcomes. Atypically large extracellular vesicles (EVs), referred as "Large Oncosomes" (LO), have been identified in highly migratory and invasive PCa cells. We recently developed and characterized the DU145R80 subline, selected from parental DU145 cells as resistant to inhibitors of mevalonate pathway. DU145R80 showed different proteomic profile compared to parental DU145 cells, along with altered cytoskeleton dynamics and a more aggressive phenotype. METHODS: Immunofluorescence staining and western blotting were used to identify blebbing and EVs protein cargo. EVs, purified by gradient ultra-centrifugations, were analyzed by tunable resistive pulse sensing and multi-parametric flow cytometry approach coupled with high-resolution imaging technologies. LO functional effects were tested in vitro by adhesion and invasion assays and in vivo xenograft model in nude mice. Xenograft and patient tumor tissues were analyzed by immunohistochemistry. RESULTS: We found spontaneous blebbing and increased shedding of LO from DU145R80 compared to DU145 cells. LO from DU145R80, compared to those from DU145, carried increased amounts of key-molecules involved in PCa progression including integrin alpha V (αV-integrin). By incubating DU145 cells with DU145R80-derived LO we demonstrated that αV-integrin on LO surface was functionally involved in the increased adhesion and invasion of recipient cells, via AKT. Indeed either the pre-incubation of LO with an αV-integrin blocking antibody, or a specific AKT inhibition in recipient cells are able to revert the LO-induced functional effects. Moreover, DU145R80-derived LO also increased DU145 tumor engraftment in a mice model. Finally, we identified αV-integrin positive LO-like structures in tumor xenografts as well as in PCa patient tissues. Increased αV-integrin tumor expression correlated with high Gleason score and lymph node status. CONCLUSIONS: Overall, this study is the first to demonstrate the critical role of αV-integrin positive LO in PCa aggressive features, adding new insights in biological function of these large EVs and suggesting their potential use as PCa prognostic markers.


Assuntos
Vesículas Extracelulares/patologia , Integrina alfaV/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Gradação de Tumores , Invasividade Neoplásica , Transplante de Neoplasias , Neoplasias da Próstata/metabolismo , Proteômica/métodos , Regulação para Cima
7.
Stem Cells Int ; 2018: 6392198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532788

RESUMO

Several evidences nowadays demonstrated the critical role of the microenvironment in regulating cancer stem cells and their involvement in tumor progression. Extracellular vesicles (EVs) are considered as one of the most effective vehicles of information among cells. Accordingly, a number of studies led to the recognition of stem cell-associated EVs as new complexes able to contribute to cell fate determination of either normal or tumor cells. In this review, we aim to highlight an existing bidirectional role of EV-mediated communication-from cancer stem cells to microenvironment and also from microenvironment to cancer stem cells-in the most widespread solid cancers as prostate, breast, lung, and colon tumors.

8.
Oxid Med Cell Longev ; 2017: 2597581, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28770020

RESUMO

The role of altered redox status and high reactive oxygen species (ROS) is still controversial in cancer development and progression. Intracellular levels of ROS are elevated in cancer cells suggesting a role in cancer initiation and progression; on the contrary, ROS elevated levels may induce programmed cell death and have been associated with cancer suppression. Thus, it is crucial to consider the double-face of ROS, for novel therapeutic strategies targeting redox regulatory mechanisms. In this review, in order to derive cancer-type specific oxidative stress genes' profile and their potential prognostic role, we integrated a publicly available oxidative stress gene signature with patient survival data from the Cancer Genome Atlas database. Overall, we found several genes statistically significant associated with poor prognosis in the examined six tumor types. Among them, FoxM1 and thioredoxin reductase1 expression showed the same pattern in four out of six cancers, suggesting their specific critical role in cancer-related oxidative stress adaptation. Our analysis also unveiled an enriched cellular network, highlighting specific pathways, in which many genes are strictly correlated. Finally, we discussed novel findings on the correlation between oxidative stress and cancer stem cells in order to define those pathways to be prioritized in drug development.


Assuntos
Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias , Células-Tronco Neoplásicas/metabolismo , Estresse Oxidativo , Proteína Forkhead Box M1/biossíntese , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Tiorredoxina Redutase 1/biossíntese
9.
Oncotarget ; 7(15): 19559-74, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26862736

RESUMO

ErbB3, a member of the ErbB family receptors, has a key role in the development and progression of several cancers, including non-small cell lung cancer (NSCLC), and in the establishment of resistance to therapies, leading to the development of anti-ErbB3 therapies.In this study we demonstrated, in a set of malignant pleural effusion-derived cultures of NSCLC, the synergistic antitumor effect of a histone deacetylase inhibitor (HDACi), such as vorinostat or valproic acid (VPA), in combination with the anti-ErbB3 monoclonal antibody (MoAb) A3. Synergistic interaction was observed in 2D and in 3D cultures conditions, both in fully epithelial cells expressing all ErbB receptors, and in cells that had undergone epithelial to mesenchymal transition and expressed low levels of ErbB3. We provided evidences suggesting that differential modulation of ErbB receptors by vorinostat or VPA, also at low doses corresponding to plasma levels easily reached in treated patients, is responsible for the observed synergism. In details, we showed in epithelial cells that both vorinostat and VPA induced time- and dose-dependent down-regulation of all three ErbB receptors and of downstream signaling. On the contrary, in A3-resistant mesenchymal cells, we observed time- and dose-dependent increase of mRNA and protein levels as well as surface expression of ErbB3, paralleled by down-regulation of EGFR and ErbB2. Our results suggest that the combination of a HDACi plus an anti-ErbB3 MoAb represents a viable strategy that warrants further evaluation for the treatment of NSCLC patients.


Assuntos
Anticorpos Monoclonais/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Receptor ErbB-3/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacologia , Immunoblotting , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptor ErbB-3/genética , Receptor ErbB-3/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ácido Valproico/farmacologia , Vorinostat
10.
Int J Mol Sci ; 17(2): 175, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26861306

RESUMO

Extracellular Vesicles (EVs) have received considerable attention in recent years, both as mediators of intercellular communication pathways that lead to tumor progression, and as potential sources for discovery of novel cancer biomarkers. For many years, research on EVs has mainly investigated either the mechanism of biogenesis and cargo selection and incorporation, or the methods of EV isolation from available body fluids for biomarker discovery. Recent studies have highlighted the existence of different populations of cancer-derived EVs, with distinct molecular cargo, thus pointing to the possibility that the various EV populations might play diverse roles in cancer and that this does not happen randomly. However, data attributing cancer specific intercellular functions to given populations of EVs are still limited. A deeper functional, biochemical and molecular characterization of the various EV classes might identify more selective clinical markers, and significantly advance our knowledge of the pathogenesis and disease progression of many cancer types.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Animais , Transporte Biológico , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Humanos , Imunomodulação , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/imunologia
11.
Free Radic Biol Med ; 89: 287-99, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26409771

RESUMO

In non-small-cell lung cancer (NSCLC) patients, the activation of alternative pathways contributes to the limited efficacy of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. The present study examines a panel of EGFR wild-type, K-Ras mutated, NSCLC lines, which were all intrinsically resistant to EGFR-TKIs, and demonstrates that the histone deacetylase inhibitor vorinostat can improve the therapeutic efficacy of gefitinib or erlotinib, inducing strong synergistic antiproliferative and pro-apoptotic effects that are paralleled by reactive oxygen species accumulation and by increased DNA damage. By knockdown experiments, we suggested that the up-regulation of voltage-dependent anion-selective channel protein 1 (VDAC1), the major mitochondrial porin of the outer mitochondrial membrane, which was induced by vorinostat and further increased by the combination, could be functionally involved in oxidative stress-dependent apoptosis. Significantly, we also observed the attenuation of the expression of both the enzyme hexokinase1, a negative VDAC1 regulator, and the anti-apoptotic porin VDAC2, only in the combination setting, suggesting convergent mechanisms that enhanced mitochondria-dependent apoptosis by targeting VDAC protein functions. Furthermore, the prosurvival capacities of the cells were also inhibited by the combination treatments, as shown by complete pAKT deactivation, increased GSK3ß expression, and c-Myc down-regulation. Finally, we observed that the combination treatment of vorinostat and either of the EGFR-TKIs induced the down-regulation of the c-Myc-regulated nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor and the up-regulation of the NRF2 repressor Kelch-like ECH-associated protein 1 regulator (KEAP1). These two genes are crucial for the redox stress response, often dysfunctional in NSCLC, and involved in EGFR-TKI resistance. Taken together, these results are the first to demonstrate that altering redox homeostasis is a new mechanism underlying the observed synergism between vorinostat and EGFR TKIs in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Gefitinibe , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Quinazolinas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Canal de Ânion 1 Dependente de Voltagem/genética , Vorinostat
12.
Oncotarget ; 6(13): 11327-41, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25857301

RESUMO

Large oncosomes (LO) are atypically large (1-10 µm diameter) cancer-derived extracellular vesicles (EVs), originating from the shedding of membrane blebs and associated with advanced disease. We report that 25% of the proteins, identified by a quantitative proteomics analysis, are differentially represented in large and nano-sized EVs from prostate cancer cells. Proteins enriched in large EVs included enzymes involved in glucose, glutamine and amino acid metabolism, all metabolic processes relevant to cancer. Glutamine metabolism was altered in cancer cells exposed to large EVs, an effect that was not observed upon treatment with exosomes. Large EVs exhibited discrete buoyant densities in iodixanol (OptiPrep(TM)) gradients. Fluorescent microscopy of large EVs revealed an appearance consistent with LO morphology, indicating that these structures can be categorized as LO. Among the proteins enriched in LO, cytokeratin 18 (CK18) was one of the most abundant (within the top 5th percentile) and was used to develop an assay to detect LO in the circulation and tissues of mice and patients with prostate cancer. These observations indicate that LO represent a discrete EV type that may play a distinct role in tumor progression and that may be a source of cancer-specific markers.


Assuntos
Biomarcadores Tumorais/metabolismo , Micropartículas Derivadas de Células/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/patologia , Centrifugação , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Forminas , Glutamina/metabolismo , Humanos , Queratina-18/metabolismo , Masculino , Camundongos , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/genética , Tamanho das Organelas , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transporte Proteico , Proteômica/métodos , Interferência de RNA , Espectrometria de Massas em Tandem , Transfecção
13.
Oncotarget ; 6(7): 5324-41, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25481874

RESUMO

Proteomic analysis identified differentially expressed proteins between zoledronic acid-resistant and aggressive DU145R80 prostate cancer (PCa) cells and their parental DU145 cells. Ingenuity Pathway Analysis (IPA) showed a strong relationship between the identified proteins within a network associated with cancer and with homogeneous cellular functions prevalently related with regulation of cell organization, movement and consistent with the smaller and reduced cell-cell contact morphology of DU145R80 cells. The identified proteins correlated in publically available human PCa genomic data with increased tumor expression and aggressiveness. DU145R80 exhibit also a clear increase of alpha-v-(αv) integrin, and of urokinase receptor (uPAR), both included within the same network of the identified proteins. Interestingly, the actin-rich structures localized at the cell periphery of DU145R80 cells are rich of Filamin A, one of the identified proteins and uPAR which, in turn, co-localizes with αv-integrin, in podosomes and/or invadopodia. Notably, the invasive feature of DU145R80 may be prevented by blocking anti-αv antibody. Overall, we unveil a signaling network that physically links the interior of the nucleus via the cytoskeleton to the extracellular matrix and that could dictate PCa aggressiveness suggesting novel potential prognostic markers and therapeutic targets for PCa patients.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Difosfonatos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Imidazóis/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Western Blotting , Movimento Celular , Proliferação de Células , Eletroforese em Gel Bidimensional , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Masculino , Invasividade Neoplásica , Neoplasias da Próstata/tratamento farmacológico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Células Tumorais Cultivadas , Ácido Zoledrônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...